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Simultaneous Object Classification and
Segmentation with High-Order

Multiple Shape Models
Federico Lecumberry, Student Member, IEEE, Álvaro Pardo, Member, IEEE,

and Guillermo Sapiro, Senior Member, IEEE

Abstract—Shape models (SMs), capturing the common features
of a set of training shapes, represent a new incoming object
based on its projection onto the corresponding model. Given
a set of learned SMs representing different objects classes,
and an image with a new shape, this work introduces a joint
classification-segmentation framework with a twofold goal. First,
to automatically select the SM that best represents the object, and
second, to accurately segment the image taking into account both
the image information and the features and variations learned
from the on-line selected model. A new energy functional is
introduced that simultaneously accomplishes both goals. Model
selection is performed based on a shape similarity measure, on-
line determining which model to use at each iteration of the
steepest descent minimization, allowing for model switching and
adaptation to the data. High-order SMs are used in order to deal
with very similar object classes and natural variability within
them. Position and transformation invariance is included as part
of the modeling as well. The presentation of the framework is
complemented with examples for the difficult task of simultane-
ously classifying and segmenting closely related shapes, such as
stages of human activities, in images with severe occlusions.

Index Terms—Shape priors, image segmentation, object mod-
eling, variational formulations.

I. INTRODUCTION

Object segmentation is one of the most fundamental tasks
in image processing, still lacking a completely automatic
solution. The main idea is to find a set of features that
describes and discriminates the object of interest from the rest
of the image. Object color is a low level feature that can be
used as such descriptor, although its discrimination capacity
is often insufficient in real images. Using shape as a high
level feature is a common approach to augment such low level
features.

The shape of the desired object is added as a descriptor,
constraining the set of possible solutions to regions of the
image that simultaneously “match” this shape and the low
level features (color, edges, etc.). The most common way to
add this shape information is in the form of a weighted linear
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combination of functionals addressing, on one hand, the low
level features and, on the other hand, the shape priors or mod-
els. This leads to a minimization problem where the solution
is a compromise between the shape of the final contour and
the information given by the image. The minimization tech-
niques used in the literature, include, among others, gradient
descent methods [1]–[5] and graph-cuts [6]. The used shape
representations can be signed distance functions (SDF) [1]–[3],
[5], [6], quadratic splines [7], characteristic functions [4], and
landmark points [8].

When M different objects (or object classes) can appear
in an image, a single shape prior (model) is not sufficient,
and multiple shape priors must be considered. A possible, but
not elegant, approach is to run the process with each one of
the shape priors separately, and then choose the best solution.
Vu and Manjunath [6] and Cremers et al. [5] define M
possible labels for each pixel on the image, and then propose
a segmentation energy that includes the optimization of these
labels in order to determine where to apply each prior. In a
different work, Cremers et al. [7] perform density estimation
in a non-linear feature space, where different objects are
separable. The proposed energy is then minimized considering
both the curve’s control points and the image.

Considering the natural deformations and the variability of
objects within a class, high-order shape models (SMs) should
be included in the segmentation. Leventon et al. [1] compute
PCA on a set of registered shapes, fitting a Gaussian prob-
ability distribution to the coefficients of the reconstruction.
This allows to include the probability of a certain shape, in
traditional geodesic active contours for low level features,
and a MAP estimation of the object in the image. Tsai et
al. [3] also use PCA to model shape variations, defining an
energy for the aligning of the binary shape, and formulate
a segmentation functional optimizing the parameters of the
representation with the first deformation modes. Cootes and
Taylor [8] compute, using PCA, a point distribution model of
landmarks points defining a shape. More recently, Charpiat
et al. [4] proposed a framework to compute non-linear shape
statistics based on the Hausdorff distance between shapes, and
then model distributions similarly to [1].

In this work, a new framework for image segmentation with
multiple high-order shape models is introduced, addressing
at the same time the selection of the model and its image-
driven positioning and adjustment to the modeled deforma-
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(a) Shapes from class 1 (b) Modes of variation for class 1 (c) Shape (left) and its five projections onto five models

(d) Modes of variation for class 2 (e) Modes of variation for class 3 (f) Modes of variation for class 4 (g) Modes of variation for class 5

Fig. 1. (a) Four shapes from one of the classes, and (b) the first three modes of variation of the corresponding model in the walking sequence. The thick
black line is the mean shape, the red lines are obtained varying the amplitude (see text). (c) Original shape (in black) and its projections Pkφ (colored as in
Figure 2) to M = 5 different models in the walking sequence, one for each cluster. The mean shape of the corresponding model is plotted too (black curve).
The projections are ordered based in the measure given by Equation (8). Note how the projection is completely deformed when using the wrong shape model.
(d) - (g) First three modes of variation for four different shape models. (This figure is in colors.)

tions. Invariance is included as part of the framework as well.
In particular, the high-order SMs are computed using PCA in
a similar way as [1], [3], obtaining a set of eigenmodes of
variations. In the case of dynamic shapes with large, non-linear
deformations, a method to obtain a lineal approximation of
the shape space is described using a dimensionality reduction
algorithm. The selection of the model is obtained with a binary
selection coefficient, on-line learned based on a similarity
measure between shapes. The proposed framework follows
from a functional that combines two terms. The first one is
a region-based segmentation term [9]. The second term is a
combination of the multiple high-order SMs, addressing the
model selection and constraining the solution to the high-order
shape information coming from the on-line selected model.
While the framework is presented for planar curves, it can be
easily extended to data in higher dimensions.

The remainder of the paper is organized as following.
Section II reviews briefly the definition and properties of
shapes models. Section III describes the proposed framework.
Section IV presents experiments testing the ideas and theirs
discussion. Section V proposes an invariance to translation
extension of the framework. Finally, Section VI concludes the
work.

II. HIGH-ORDER MULTIPLE SHAPES MODELS

Consider M sets Φk, k = 1, . . . ,M , each with Nk reg-
istered shapes Φk = {φ1

k, . . . , φ
Nk

k }, where each φjk is a
signed distance function (SDF), whose zero level-set curve,
Cjk, represents a shape from the k-th class of objects. Let Md

k

be a d-order model that captures the intrinsic deformations
of the training set Φk for the class k. In this work, Md

k is
derived from a PCA decomposition of the training set Φk (all
the shapes φk are represented as vectors in RD, D being the
size of the range of the corresponding SDFs),

Md
k := {µk, Udk }, (1)

where µk ∈ RD is the mean shape of Φk, Udk ∈ RD×d is a
matrix containing the first d modes of variation (eigenmodes),
Udk = [{uik}di=1], uik ∈ RD.

A modelMd
k generates a representation of a new incoming

shape φ̂ by the d-projection Pdk φ̂

Pdk φ̂ = µk + Udkαk, (2)

where αk ∈ Rd are the corresponding reconstruction coef-
ficients, which of course depend on φ̂ (see for example [1,
section 2.1] for details).

The accuracy of the representation depends on the similarity
between φ̂ and the shapes in Φk. Constraining small shape
variations in the class Φk (compared with the deformations
across different classes k) allows to obtain accurate represen-
tations using a linear approximation like PCA.

Finally, let
M = {M1, . . . ,MM}

be a set of SMs for the M different classes of objects. For
simplicity, the order d in the notation is omitted from now on.

Figure 1 shows SMs for a walking person. Figure 1a shows
four different shapes from one of the classes of shapes, note the
similarity between them. Figure 1b shows the first three modes
of variation of the corresponding model in a walking sequence.
The data was obtained filming a single person walking with
a static background [10]. The thick black line is the zero
level set of the mean shape. The red lines are the zero level
sets of the addition of the mean shape and a constant times
the first, second, or third eigenmode respectively, varying the
amplitude. Figure 1c shows an original shape from the set
and its projections (with d = 21) to M = 5 different models
in a walking sequence. The mean shape of the corresponding
model is plotted too (black curve). The projections are ordered
based in the measure given later by Equation (8). Note how
the projection is completely deformed when using the wrong
model, clearly illustrating the importance of selecting the
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(a)

(b)

Fig. 2. (a) Low dimensional embedding. Each point correspond to the first
three coordinates of the mapping obtained with DM. The colors correspond to
the M = 5 obtained cluster. One sample shape from each cluster (walking-
cycle position) is shown. (b) Eighteen samples from the walking sequence
colored based on the obtained clusters. (This figure is in colors.)

correct shape model (prior). Figures 1d, 1e, 1f and 1g show
the first three modes of variation of the other four models
obtained from the same walking sequence. The procedure to
obtain these models is explained in the next section.

A. Clustering a set of shapes

One of the used datasets of shapes was taken from the
sequence of a walking person [10]. Considered as a unique
deformable object, this shape has large, non-linear deforma-
tions, invalidating the hypothesis of small (and linear) shape
variations for this set. To alleviate this, a set of clusters may be
considered. In this way linear approximations can be used to
approximate shape deformations within each cluster to obtain
Mk. In order to obtain the clusters, in this work a non-
linear mapping to an Euclidean space is performed based on
Diffusion Maps (DM) [11]. DM is a general framework for
data analysis based on a diffusion process over an undirected
weighted graph, defining a new metric on the data called
Diffusion Distance. Two properties of this metric are important
in the present work. First, as a consequence of the density
renormalized kernel defined to build the graph, the graph-
Laplacian (see VonLuxburg’s tutorial [12] for definition and
properties of the graph Laplacian) is an approximation of
the Laplace-Beltrami operator on the underlying manifold,
allowing to recover the Riemannian geometry of the data
set regardless the distribution of the points in the underlying
manifold. Second, the Diffusion Distance is equivalent to the
Euclidean distance in the space with coordinates given by the
mapping function. This allows to simply compute K-means
in the corresponding Euclidean space in order to group the
shapes into M clusters and then obtain a local model in each
cluster.

To recapitulate, the clusters are obtained by mapping into a
new space via DM (a kernel method) and then applying K-
means on this space. Note that the subsequent PCA could
actually be performed in this space as well (using Kernel
PCA [13], [14]), though the clustering makes the inner class

variations already well approximated by ordinary PCA.
Figure 2 shows the clustering result. Figure 2a shows the

low dimensional embedding manifold. Each point correspond
to the first three coordinates of the mapping colored based
on the obtained clusters. One sample shape from each cluster
(walking-cycle position) is shown too. Figure 2b shows eigh-
teen consecutive samples from the walking sequence colored
based on the obtained clusters.

III. PROPOSED VARIATIONAL FRAMEWORK

Given an input image I : Ω ⊂ R2 → R containing one
or more shapes generated by the shape models Mk ∈M, an
energy E is defined to simultaneously select the best model(s)
and obtain a segmentation of the corresponding objects in I
(a single object in each image is considered from now on for
simplicity),

(M∗, φ∗) := arg min
M∈M,
φ,c+,c−

E(I, φ, c+, c−,M). (3)

This energy includes two terms linearly combined with the
constant λ,

E(I, φ, c+, c−,M) = ECV(I, φ, c+, c−) + λESM(φ,M). (4)

The ECV term is, for the examples in this paper, the energy
introduced by Chan and Vese [9],

ECV(I, φ, c+, c−) =
∫

Ω

|I(x)− c+|2H(φ(x))dx+∫
Ω

|I(x)− c−|2(1−H(φ(x)))dx+

µ

∫
Ω

δ(φ(x))|∇φ(x)|dx, (5)

where c+ and c− are the averages of the input data inside
and outside the curve C (the zero level set of φ), respectively,
H(·) is the Heaviside function, and δ(·) is the Dirac function.
This energy attempts to split the input data into two different
regions of approximately piecewise constant color or gray level
values (c+ and c−). Other low level descriptors could be used
for a better discrimination, for example texture [15] or edges
[16].

The term ESM adds an additional force aiming at maxi-
mizing the similarity between the evolving shape φ and its
projection onto only one of the d-order models from M. Which
one of the M models is used depends on the evolution of the
shape and its projection to each model. The proposed term is

ESM(φ,M) =
M∑
k=1

βkEk(φ,Mk), (6)

defining

Ek(φ,Mk) =
∫

Ω

‖H(φ(p))−H(Pkφ(p))‖2 dp, (7)

where again H(·) is the Heaviside function, βk is a binary
coefficient that (on-line) selects which of the M models is
used, and Pkφ is the projection of φ onto the model Mk,
given by Equation (2). Only one of the βk must be different
from zero in (6), since it is not fair to penalize for models that
do not correspond to the object in the image. This is detailed
next.
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Fig. 3. (a) Mode of variation for the two ellipses models (M1
V in green and M1

H in red), the mean shape of both models is the same and is plotted in
black dash line. (b) Results for the experiments with M1

H and M0
V (only mean shape). Some steps in the segmentation (see text) (c) Evolution of the shape

dissimilarity measure for the experiments with M1
H and M0

V . (d) Results for experiments with M1
H and M1

V (complete model). (e) Evolution of the shape
dissimilarity measure for the experiments with M1

H and M1
V . (This figure is in colors.)

A. Shape dissimilarity measure and model selection

Which is the non-zero βk in Equation (6) is computed based
on a shape dissimilarity measure (Υ) between two shapes φ1

and φ2,

Υ(φ1, φ2) =
∫

Ω

|φ1(p)|δ(φ2(p))
length(C2)

dp+
∫

Ω

|φ2(p)|δ(φ1(p))
length(C1)

dp.

(8)
This is a length-normalized variation of the measure intro-
duced by Funkhouser et al. [17]. This measure evaluates
the sum of Euclidean distances corresponding to moving the
contour of the first shape to points in the contour of the
second shape, and viceversa, scaled by the curves lengths.
In Figure 1c, the projected shapes are ordered according to
increasing values of Υ(φ,Pkφ). These ordered values are 1.35,
2.83, 3.59, 5.87, and 7.83 respectively.

Based on (8), a normalized shape similarity measure ξ̄k(φ)
between a shape φ and its projection Pkφ to the d-order k-th
model is computed as

ξ̄k(φ) =
ξk(φ)∑M
l=1 ξl(φ)

, where ξk(φ) = exp (−Υ(φ,Pkφ)) .

(9)
This normalized similarity measure ξ̄k(φ) is close to one for
the model that better represents φ. Finally to force the binary
value in βk, soft thresholding, based on a sigmoid function,
is performed. Note that a unique coefficient is used as model
selector, instead of one coefficient in each pixel as in [5], [6].
This encourages shape consistency and significantly simplifies
the optimization.

With the proposed method, one model is always selected
and a segmentation is obtained, even if the shape in the
image has no appropriate model in M that provides a good
representation. The validation of the final segmentation can
not be directly compared to the original non-occluded shape
in all the cases, since there is no way to “create” the particular
features or attributes that are occluded in it. Instead of this,
the resulting segmentation is evaluated taking into account

the fact that the shape is generated by a model M in M
and the solution should then be a “valid” shape generated
by this model. The following measure permits to discard a
segmentation φ̃ given the selected model. First, the mean Ῡk

and variance σ2
Υk

of Υ(φjk, µk) are computed ∀φjk ∈ Φk. Then
if

Υ(φ̃, µk) > Ῡk + 1.5σ2
Υk
, (10)

the segmentation is discarded, and the shape can not be
recognized.

B. Energy minimization

The proposed energy is minimized using a classical gra-
dient descent method. For the gradient descent of ECV, the
expression is given in [9, Equation (9)]

∂ECV

∂φ
= δ(φ)

(
(I − c+)2 − (I − c−)2 − µ∇ ·

(
∇φ
|∇φ|

))
.

For ESM, the obtained expression is

∂ESM

∂φ
=−2

M∑
k=1

βk
∥∥H(φ)−H(Pkφ)

∥∥(δ(φ)− δ(Pkφ)W
)
,

where W = UkU
T
k . Although the model selector βk depends

of φ, is treated as static, as a first order approximation for the
gradient descent, since it affects the model selection and only
indirectly the evolution of the curve.

Finally the first variation of Equation (4) becomes,

∂E

∂φ
=
∂ECV

∂φ
+ λ

∂ESM

∂φ
. (11)

C. Prior activation

The first steps of the optimization are performed without
SMs information (λ = 0), until stationarity, then the “prior is
activated” adding ESM with λ 6= 0 (manually selected) until
a new stationary point is reached, now combining the image
and the shape information. This helps to determine the object
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in the image without affecting the initial steps of the evolution
with the projections to the models of the initial curve used in
the minimization, which in the general has no similarity with
the shapes in the models. A similar idea of “prior activation”
is considered by Vu and Manjunath [6] using shape prior
templates instead of SMs.

The Gestalt Principles [18] can give some intuition to this
initial step. The “Principle of Similarity” states that people try
to organize visual elements into groups based in the similarity
of certain feature (shape, intensity, texture, etc.). This gives
an additional argument for trying to start grouping regions
of similar intensity and use the results as an initial point or
“primary units” for helping the minimization process. After the
identification of these “primary units,” the addition of priors
is used for a better interpretation of the object or scene.

IV. EXPERIMENTAL RESULTS

A. Models of ellipses

The first example is a “toy example,” though illustrative
and challenging, with two models of ellipses, where the
only difference is that the first (and only beyond the mean
shape) eigenmode is rotated π

2 (this already exemplifies the
importance of high-order models). Let us nameM1

V the model
with vertical deformations andM1

H the model with horizontal
deformations. Figure 3a shows the mode of variation for both
models, in green for M1

H and in red for M1
H.

The input image contains an occluded vertical ellipse,
not present in the training set. Two different experiments
are presented, varying the order d of the model Md

V while
maintaining the highest dimension for the model that does
not represent the input shape, M1

H. With d = 0, only the
mean shape is considered in the shape prior (no deformations),
with d = 1 the vertical deformations are considered. All the
parameters are the same in both experiments. Figures 3b and
3d show some steps in the minimization, and figures 3c and 3d
show the evolution of the shape dissimilarity measure, for both
experiments, respectively. Steps À and Ä show an intermediate
curve in the evolution with λ = 0, and the projections, P1

Hφ
and PdVφ, to both models, dashed colored lines. The initial
curve (in yellow) is also shown. Note that P0

Vφ has no vertical
deformations. The following steps (Á,Â and Å,Æ) show the
evolution after the “prior activation” adding the ESM term
(λ = 1.1), and the obtained segmentation (Ã and Ç).

In the first experiment (Figure 3b), the projections to both
models end in the same shape, the mean shape. This is
reflected also in the graph of dissimilarity measure (Figure 3c)
by the overlapping of the green and red curves. In the second
experiment (Figure 3d),M1

V captures the variation of the input
shape, as reflected in the obtained segmentation. In this case
there is also a model switching around iteration 200 (step
Å), where the M1

H is selected while the occlusions are being
filled. After this point, the vertical deformation determines the
selection of M1

V for the rest of the evolution, ending with
an accurate segmentation. Clearly, the high-order model and
the automatic model selection are critical to obtain the correct
segmentation.

(a) (b)

(c)

(d)

Fig. 4. (a) Input image with an occluded shape φ̂1 in gray levels. (b)
Projections of φ in the “prior activation” iteration (blue curve in step À in
Figure 4c) onto the five models, ordered based on Υ(φ,PWk

φ). The mean
shape of the corresponding model is plotted too (black curve). (c) Steps À
to Ã in the evolution of φ (blue curve) and its projections onto the selected
model MW1

(green curve). The obtained segmentation is the red curve. (d)
Evolution of the shape dissimilarity measure, Υ(φ,PWk

φ) with the iterations.
The curves in steps À-Ã are shown in Figure 4c. (This figure is in colors.)

B. Models from the walking sequence

Five high-dimensional models of a walking person cycle
M21

Wk
(k = 1, . . . , 5, d = 21) were obtained with the procedure

explained in Section II-A. The first three modes of variation for
each model are shown in Figure 1. These are the models in the
set of models M = {MWk

}5k=1 for the next experiment. This
set of models is particularly challenging for model selection
since they are different deformations of the “same object.”

The input image in this experiment contains a new occluded
shape φ̂1 (Figure 4a) that belongs to the model MW1

and is
not in its training set Φ1. Figure 4 shows details about the
segmentation of φ̂1. Figure 4c shows four steps after the “prior
activation” (steps À to Ã) in the evolution of φ (blue curve)
and their projections onto the automatically on-line selected
modelMW1

(green curve). Also the obtained segmentation φ̃1

(red curve) and its projection is shown. Figure 4b shows the
projections of φ (blue curve) in the “prior activation” iteration
onto the five models, ordered based on Υ(φ,PWk

φ) for this
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iteration. The mean shape of the corresponding model is plot-
ted too (black curve). Compare the projections of the occluded
shapes (Figure 4b) with those of a similar non-occluded shape
in Figure 1c. Note how the projections onto the incorrect
models are not too different, but the projections onto the
correct model have significative differences. Figure 4d plots
the evolution of the shape dissimilarity measure, Υ(φ,PWk

φ),
for all the iterations and the five models. Note how the correct
model is the one with lowest dissimilarity measure.

This experiment is repeated four times, maintaining the
same set of models M = {MWk

}5k=1 and changing the
input image. In each repetition, the input image contains a
new occluded shape φ̂k, k = 2, 3, 4, 5, belonging to the
models MWk

, k = 2, 3, 4, 5, respectively. These four images
are shown in Figure 5a with the corresponding obtained
segmentations φ̃k (red curves) and the projections onto the
corresponding selected model (dashed green curves).

The results in Figure 4 show a number of important char-
acteristics of the proposed framework that are consistent for
all the presented experiments. First, in all the examples the
selected model is the one to which the input shape belongs and
the obtained segmentation is accurate to the data given by the
image. Also, for all the experiments, during the minimization
iterations the model selection is stable and there is no switch
between the models once the shape prior is activated.

Second, it is relatively easy to follow the variations of
the projection in the shape dissimilarity measure graph as
the curve evolves. When the occlusions are being filled, the
projection gets more similar to the shapes in MW1

and the
dissimilarity Υ(φ,PW1

φ) reduces. This is due to the force
generated by the shape term ESM, and as the curve gets closer
to its projection this term attracts the curve strongly. Although
this behavior is due to the ESM term, the competition of both
energy terms in areas of the shape where there is no occlusion
preserves the curve close to the contour of the original shape,
preventing to locally follow the projection, meaning that the
ECV energy term is stronger than the prior in this area of the
image. This can be seen in the final segmentation (red curve
in Figure 4c), where the projection (dashed green curve) in the
hand goes through the original shape but the curve respects the
gray level information. Similar details can be seen in Figure 5a
for a different example. This example shows how the two
energy terms collaborate to obtain a good segmentation of
the occluded shape and each term attempts to define the curve
in the regions where it better describes the solution. Where
there is an occlusion the shape prior term takes control of

k(MWk
) Υ(φ̃k, µk) Ῡ σ2

Υ Υ(φ̃k, φk)

1 4.53 3.85 0.91 0.86
2 3.39 2.66 0.68 1.05
3 2.60 3.42 1.31 0.59
4 4.14 3.75 1.37 1.44
5 2.99 3.18 1.17 2.18

TABLE I
NUMERICAL VALIDATION RESULTS (EQUATION (10)) AND DISSIMILARITY
MEASURES (EQUATION (8)) FOR THE OBTAINED SEGMENTATIONS φ̃k FOR

THE EXPERIMENT IN FIGURES 4 AND 5.

(a)

(b)

Fig. 5. Segmentations obtained with the proposed framework with the set of
models M = {MWk

}5
k=1 for different input images. (a) Segmentations for

the binary occluded shapes φ̂2, φ̂3, φ̂4 and φ̂5 belonging to different models
MWk

, k = 2, 3, 4, 5, respectively. (b) Segmentations of the gray level images
with added occlusions. The shapes in these images also belong to different
models MWk

, which are all correctly selected by the proposed framework.
(This figure is in colors.)

the curve and where there is information of the actual shape
(given by the intensity of the pixels), the data term controls
the curve. This is done in a collaborative way, there is no
discontinuity in the curve and it remains smooth. In order to
achieve this, the projection onto the proper model is critical.
Also the selection of the parameter λ is important, determining
these collaboration/competition between both energy terms.
In this work, as often done in the literature, λ is manually
obtained. As a rule of thumb λ ∈ (1.0, 1.2) was found to be
a good initial estimation.

Table I shows numerical results for the validation of the
obtained segmentation (see Equation (10)). The dissimilarity
between the obtained shape and the original non-occluded
shape Υ(φ̃k, φk) (possible in these experiments since it is
accessible) is shown in the last column. Note that these last
measures are, in general, significantly smaller than the mean

Υ(φ̃k, µ1) Υ(φ̃k, µ2) Υ(φ̃k, µ3) Υ(φ̃k, µ4) Υ(φ̃k, µ5)

φ̃1 4.53 13.16 6.99 9.08 11.54
φ̃2 12.99 3.39 11.05 7.65 6.05
φ̃3 6.87 9.14 2.60 6.34 7.45
φ̃4 6.89 8.43 7.48 4.14 7.97
φ̃5 8.81 6.64 7.01 6.54 2.99

TABLE II
DISSIMILARITIES MEASURES (EQUATION (8)) BETWEEN THE OBTAINED
SEGMENTATIONS φ̃k AND THE MEAN SHAPES µk OF THE MODELS IN M

FOR THE EXPERIMENT IN FIGURES 4 AND 5.
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(a) (b)

(c) (d)

Fig. 6. Obtained segmentations with different orders of the shape model. (a) Set of shapes used in the experiment, the boxed shape is φS . (b) First three
modes of variation of the model MS1

. (c) Segmentation of φ̂S (an occluded version of φS) when φS is not in the training set (left to right and top to bottom
d = [3, 7, 10, 13]). (d) Segmentation of φ̂S when φS is in the training set (left to right and top to bottom d = [3, 10, 13, 14]). (This figure is in colors.)

dissimilarity between the shapes in the training set and the
mean shape, Ῡk. This indicates the high accuracy of the
proposed framework for this data.

Table II shows the dissimilarity measures between the
obtained segmentations and the mean shapes for all the models
in M, for the five different images and shapes in figures 4
and 5, the minimimum for each is in bold in each row,
and obtained in the diagonal as expected from a correct
model selection. Note how the difference between the minima
and the next greater value in each row are considerable.
This further indicates how the automatic model selection is
correctly performed. Taking into account that the obtained
segmentations correspond to shapes generated by the selected
models, in all the experiments, the results were validated with
the proposed measure, Equation (10), and were not validated
by the other four used models. This further supports the
validity of the proposed framework in general and the on-line
automatic selection of the correct model in particular.

Figure 5b shows the obtained segmentations with the pro-
posed framework for four different gray level images. The
configuration of the framework is the same as in the previous
examples, using the set of models M = {MWk

}5k=1. The
automatically selected models, as well as the obtained seg-
mentations, are also correct and accurate.

C. Varying the order of the models

This section further analyzes the segmentations when the
order d of the model varies. The shapes used in this test are
shown in Figure 6a. They are fifteen shapes of sharks taken
from the SQUID database [19]. Two different sets of shapes
are defined, ΦS1 and ΦS2 . ΦS1 has fourteen shapes, leaving
out the shape marked with a box in Figure 6a, while ΦS2 uses
the fifteen shapes. Two different models were created, Md

S1

from ΦS1 and Md
S2

from ΦS2 . Since ΦS2 is larger than ΦS1 ,
Md

S2
might have more maximal modes of variation thanMd

S1
,

this happen in this case being d = 14 the number of modes of
variation for Md

S2
and d = 13 for Md

S1
. Figure 6b shows the

first three modes of variation ofMd
S1

. The modes of variation
of Md

S1
are very similar to those of Md

S2
.

Inspite of the “visual” similarity of the shapes in the set,
their variations are larger than in the previous examples. For
instance, they are not just a sampling of the deformation of
an object like the walking sequence or the ellipses. This can
be observed from the mean dissimilarity measure between the
shapes in the training set and the mean shape, Ῡ. For the
models MSk

this value is close to 6 (see tables IIIa and IIIb)
whereas for the models MWk

is smaller than 4 (see Table I).
This is a significant difference for this dissimilarity measure.
(Note that the dissimilarities can be compared since they are
normalized by their corresponding curve length.)

In order to analyze the segmentations varying the order of
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the model, at first a single model is used in M at a time,
without the influence of the model selection component of the
framework.

The first experiment consists of the segmentation of an
input image with an occluded version of the boxed shape in
Figure 6a, with the modelMd

S1
with different order d (number

of modes of variation). Let φS be the original shape, φ̂S its
occluded version, and φ̃Sd

the obtained segmentation with the
d-order model. Figure 6c shows the obtained segmentations
φ̃Sd

(red curves) for d = [3, 7, 10, 13]. The projection to the
model is also plotted (dashed green curves).

This experiment is repeated using the modelMd
S2

. Figure 6d
shows the obtained segmentations for d = [3, 10, 13, 14] and
the corresponding projections onto the model.

Table IIIa shows, for the model MS1
, the dissimilarity

measure between the obtained segmentations φ̃Sd
for different

d and the original non-occluded shape, Υ(φ̃Sd
, φS), and the

dissimilarity measure with respect to the mean shape µS1 ,
Υ(φ̃Sd

, µS1). Table IIIb shows the same results for the model
Md

S2
and the mean shape µS2 .

As can be observed in both experiments, the projection
better represents the shape as the order increases.

In the first experiment (Figure 6c), the obtained segmenta-
tion improves the adjustment to the shape as the model has
more details to represent. This can be seen for example in
the pectoral and tail fin and under the head. However, since
the projection does not perfectly adjust to the object, there
is a competition between both energy terms, generating an
intermediate curve that does not completely fit the present
object. If more weight is added to the ESM term, other regions
of the curve, in non-occluded areas of the object, will follow
a less accurate approximation of the projection and lead to
a worst segmentation, for example in the belly of the shark.
Trying to choose the best segmentation from this four cases
of d, the curve obtained with d = 10 seems to be the slightly
more accurate than the curve obtained with d = 13, for
example, analyzing the adjustment in the tail and the pectoral
and pelvic fins. This is also support by the dissimilarity
between the obtained segmentations φ̃Sd

and the original non-
occluded shape, last column of Table IIIa. This provides an
example of a kind of over-fitting of the model to the shapes
in the training set, capturing features too specific in the higher
eigenmodes.

On the other hand, with the model Md
S2

that includes the

Md
S1

d Υ(φ̃Sd , µS1 ) Υ(φ̃Sd , φS)

3 3.59 1.46
7 4.15 0.97
10 4.25 0.95
13 3.96 1.38

(a) Ῡ = 6.11, σ2
Υ = 1.42

Md
S2

d Υ(φ̃Sd , µS2 ) Υ(φ̃Sd , φS)

3 5.68 6.34
10 5.49 2.60
13 3.69 1.63
14 4.00 0.63

(b) Ῡ = 5.93, σ2
Υ = 1.48

TABLE III
NUMERICAL VALIDATION RESULTS (EQUATION (10)) AND DISSIMILARITY

MEASURES (EQUATION (8)) FOR THE OBTAINED SEGMENTATIONS φ̃Sd

SHOWN IN FIGURE 6.

Fig. 7. Evolution of the shape dissimilarity measure, Υ(φ,PSk
φ), with the

minimization iterations. (This figure is in colors.)

non-occluded shape in the training set (Figure 6c), the ESM

shape term has more relevance in the segmentation. When
the order of the model increases, the projection gets more
accurate and the segmentation improves. When the order is
low and the projection is not accurate, the segmentation again
is a compromise between the two energy terms, being an
intermediate curve between the projection and the edges of the
gray level information. Finally, the main difference between
the segmentations with d = 13 and d = 14 are the fine details
like high curvature points, see the extreme points in the tail
and the pectoral fin.

The last experiment of this section is done using both mod-
els in the set M = {M13

S1
,M14

S2
}, and the same occluded shape

in the input image. Figure 7 plots the dissimilarity measure
for this example. The selected model is M14

S2
which has one

additional eigenmode and obtains a better description. The
obtained segmentation is, of course, the same segmentation
shown in Figure 6d with d = 14. This further supports the
necessity of high-order models in order to obtain accurate
segmentations, in particular when the different object classes
are relatively similar.

These obtained segmentations are also validated by the
proposed validation process, (Equation (10)).

V. INVARIANCE TO TRANSLATION

Invariance to geometric transformations (such as transla-
tions, rotations and scaling) is a desiderable property in a
general framework for segmentation. One way to do this is
to substitute H(φ) by

H(σRθ(φ(x− x0)))

in Equation (7), as in the work of Cremers et al. [2, section
5.1]. Here, σ is a scale factor, Rθ a rotation matrix of a given
angle θ, and x0 a translation vector.

This section proposes an extension of the functional in
Equation (7), adding invariance to translation (other invariance
are similarly added).

Consider all the shapes aligned with respect to their cor-
responding center of mass pφ, defined for a certain shape φ
as

pφ =

∫
Ω
pH(φ(p))dp∫

Ω
H(φ(p))dp

.

The shape models are build in the same way as in the previous
section. Considering that all the shapes in Φk have the same
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Fig. 8. Segmentations obtained with the translation invariant energy (see Equation (13)). (a) Four zero-order models (shape prior templates). (b) Four different
initial curves (yellow curves) and the obtained segmentations (red curves). (c)-(d) Two different initializations with Gaussian noise added. Initial curve (in
yellow), last curve previous to the “prior activation” (in blue) and obtained accurate and valid segmentation (red curve).

center of the mass pk, this point becomes the center of mass
of the model. To obtain the projection of a new, not aligned,
shape φ with center of mass pφ, first the shape is translated
to pk and then projected. Mathematically, the projection to
the translation invariant modelM(IT)

k centered at pk, becomes
Pkφ(p+ pφ − pk), and lets call pkφ its center of mass. Finally,
the projection needs to be translated back to the original center
of mass. Defining T (φ(p), p0) = φ(p+p0), the final projection
to the translation invariant model is

P(IT)
k φ = T (PkT (φ(p), pφ − pk), pkφ − pφ). (12)

Without loose of generality pk = 0 is assumed from now on.
In order to incorporate the invariance to translation in the

original energy, the shape models terms Ek(φ,Mk) become

Ek(φ,Mk) =
∫

Ω

‖H (φ(p+ pφ))−H (Pkφ(p+ pφ))‖2 dp.

(13)
If the kth model provides a good representation of φ, the

corresponding centers of mass are close, pkφ ≈ pk = 0. For
the derivation of the corresponding gradient descent expression
below, this approximation is assumed, simplifying the deduc-
tion here presented. However in the implementation the actual
pkφ is used. The updated gradient descent expression is given
by

∂ESP

∂φ
= −2

M∑
k=1

βk

[
∆H(p)∆δ(p)+

δ(φ(p))(p− pφ)T∫
Ω
H(φ(u))du

∫
Ω

∆H(z)∆δ(z)∇φ(z) dz
]
, (14)

where ∆H(p) =
(
H(φ(p))−H

(
P(IT)
k φ

))
and ∆δ(p) =

(δ(φ(p))− δ (T (WPkT (φ(p), pφ),−pφ))).
Again, βk is treated as static, as a first order approximation

for the gradient descent.

A. Model selection with invariance to translation

An example of the model selection capabilities of the trans-
lation invariant framework is shown in Figure 8. In order to
test only the model selection, without being influenced by the

adjustment to the selected model, four zero-order models are
used. A zero-order model obtains always the same synthesized
shape for any input shape, this synthesized shape being the
mean shape of the model in this work. The zero-order models
are shown in Figure 8a. These four different shapes from the
SQUID database are arranged in a single image with occlusions
for each shape and this becomes the input image for testing
the framework. Figure 8b shows four different initial curves
(in yellow) and the segmentation (red curves) obtained with
the proposed framework. Two examples with Gaussian noise
added to the image are shown in Figures 8c and 8d.

In all the cases the segmentations are accurate which also
implies that the selected model is the correct one. Note that
these results are valid even when the initial curves are not
clearly defining one object (following our definition of validity,
Equation (10)).

B. Segmentations with invariance to translation

The last tests show the translation invariant framework
working with the high-order models. The first experiment
reproduces the test with the ellipses (Section IV-A), now
with the addition of Gaussian noise and the translation of
the ellipse. Figure 9a shows the details of the segmentation.
The first subfigure shows the initial curve (in yellow), an
intermediate step (blue curve), and its projections to both
models (green and red dashed curves). Note the projections
translated to the center of mass of φ. The second subfigure
shows the projection to the correct model and the curve
filling the occlusions. The last subfigure shows the obtained
segmentation (red curve).

Figure 9b shows the segmentation of an image with an
occluded binary shape from the walking sequence and Fig-
ure 9c shows the segmentation of an image with a gray level
shape from the walking sequence, using the set of translation
invariant models for this dataset. Again the result is an accurate
segmentation with a valid shape from the correctly selected
model.
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(a) (b) (c)

Fig. 9. Segmentations obtained with the translation invariant energy (see Equation (13)). (a) Three steps in the segmentation of the ellipse from Figure 3.
Note in the first image the projections translated to the center of mass of φ. The second image shows the projection to the correct model and the curve filling
the occlusions. The last image shows the obtained segmentation (red curve). (b) Obtained segmentation of a binary shape from the walking person cycle. (c)
Obtained segmentation of a gray-valued shape from the walking person cycle. (This figure is in colors.)

VI. CONCLUDING REMARKS

A framework for simultaneous and automatic model selec-
tion and object segmentation was introduced in this work. The
proposed technique is based on a new energy that combines
region based segmentation with on-line selection of the best
model for the object present in the image, and an adjustment
to the best description of the object given the selected model.

The segmentation is obtained via gradient descent energy
minimization, and the model selection is automatic in each
iteration, without the need to run the segmentation with all the
models and then select the best solution. The on-line decision
of best description is based on a shape dissimilarity measure
between the curves. The selection is such that a unique model
candidate is considered at each step of the minimization.
Invariance to shape transformations are incorporated into the
proposed framework as well.

Possible directions for further improvements include incor-
porating high-order modes in the validation step and consid-
ering going beyond PCA, as well as including class-dependent
model orders (dk). Results in these directions will be reported
elsewhere.
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